Synthesis and Characterization of New Copper (II) Mixed Diphosphates $(M, Cu)_2 P_2 O_7$ with M = Mg, Ca, Sr, and Ba

A. BOUKHARI,¹ A. MOQINE, AND S. FLANDROIS*

Laboratoire de Chimie du Solide Appliquée, Départment de Chimie, Faculté des Sciences, Rabat, Morocco; and *Centre de Recherche Paul Pascal du CNRS, Domaine Universitaire de Bordeaux I, 33405 Talence, France

Received December 18, 1989

We have obtained at 1173 K new diphosphates $(M, \operatorname{Cu}_2P_2O_7 \text{ with } M = Mg$, Ca, Sr, and Ba. The β -forms of Mg_2P_2O_7 and Cu_2P_2O_7 appear with a small quantity of Cu²⁺ and Mg²⁺ ions in their structure, respectively. The solid-solution β -Mg_2- $_x$ Cu_xP_2O_7 (0.04 $\leq x \leq 1.94$) at 298 K is continuous and isomorphous to β -Mg_2P_2O_7 and β -Cu_2P_2O_7; its limits were evaluated with DTA and X-ray techniques. Only three new phases CaCuP_2O_7, SrCuP_2O_7, and BaCuP_2O_7 were isolated in the (A, Cu) P_2O_7 systems, $A = \operatorname{Ca}$, Sr, and Ba. The two former are isomorphous to α -Ca₂P₂O₇, while the X-ray spectrum of the latter is similar to that of BaCoP_2O_7 and BaNiP_2O_7. © 1990 Academic Press, Inc.

Introduction

Divalent metal ion diphosphates are characterized by mixed octahedral and tetrahedral frameworks. They can be divided into two series. The first one is formed by cations of small radii (Mg, Mn, Co, Ni, Cu, and Zn) (1-13) and diphosphates of this class have structures closely related to that of thortveitite (14). The second series are those diphosphates of alkaline earth (Ca, Sr, and Ba) which seem to have too large atoms to stabilize the thortveitite lattice (15-18). The Cd₂P₂O₇ compound is the upper limit of the thortveitite-like structure and the lower limit of the alkaline earth class (19).

However, not many studies have been reported on mixed alkaline earth and transition metal diphosphates. The compounds CaMgP₂O₇, SrMgP₂O₇, SrZnP₂O₇, BaMg P_2O_7 , and BaZnP₂O₇ have been obtained and investigated for their luminescence properties (20–26). Recently, the diphosphates BaNiP₂O₇ and BaCoP₂O₇ have been mentioned by Riou *et al.* (27).

This paper deals with chemical studies and characterization of new phases of copper (II)-mixed diphosphates $(M, \text{Cu})_2\text{P}_2\text{O}_7$, where M = Mg, Ca, Sr, and Ba, with large radii, except for Mg. Their cell parameter values are discussed in comparison with other compounds of these systems.

Experimental

The solid-solutions $M_{2-x}Cu_xP_2O_7$ (MCuss) with M = Mg, Ca, Sr, and Ba ($0 \le x \le 2$) were prepared at 1173 K from powder starting materials $M_2P_2O_7$ and $Cu_2P_2O_7$ which are obtained by two processes: the dry and wet methods.

¹ To whom correspondence should be addressed.

Dry method. Stoichiometric amounts of diammonium phosphate $(NH_4)_2HPO_4$ and oxide (MgO, CuO) or carbonate (CaCO₃, SrCO₃, BaCO₃) were mixed, ground in a mortar, and then heated slowly to 1173 K in an alumina crucible. Several heatings of pressed pellets were used to obtain pure powders.

Wet method. The starting diphosphates could be prepared also by precipitation from an aqueous solution $Na_4P_2O_7$ with an excess of metal nitrate or chloride. The precipitate was filtered, washed with cold water, and then fired at 1173 K.

All samples were identified with X-ray diffraction (XRD) on a diffractometer (CGR, Theta 60) using $CuK\alpha_1$ radiation, filtered by a monochromator.

Measurements of the magnetic susceptibility of $CaCuP_2O_7$ (CaCu), $SrCuP_2O_7$ (SrCu), and $BaCuP_2O_7$ (BaCu) were carried out on powder samples using the Faraday technique between 4.2 and 300 K.

Results and Discussion

$Mg_{2-x}Cu_xP_2O_7$ Solid-Solution $(0 \le x \le 2)$

The XRD pattern analysis of MgCuss shows the existence of the β -forms of Mg₂P₂O₇ and Cu₂P₂O₇ with small substitution of Mg²⁺ and Cu²⁺ in both diphosphates by Cu²⁺ and Mg²⁺, respectively.

Figure 1 gives the evolution of α - β polymorphism, determined by DTA (micro ATD, Setaram M5), with the composition x of MgCuss. We observe in this figure a continuous solid-solution β -(Mg, Cu)₂P₂O₇ between x = 0.04 and 1.94 at 298 K. These values were deduced by extrapolation, at this temperature, of experimental data (temperature, composition) close to Mg₂P₂O₇ (x = 0) and Cu₂P₂O₇ (x = 2). These limits are in good agreement with those determined by X-ray diffraction (x = 0.05 and 1.94).

The XRD patterns of α - and β -Cu₂P₂O₇ are_very similar and only the (113) and (221) peaks, observed in α -form, allow dis-

FIG. 1. Variation of $\alpha - \beta$ transition temperature with the composition x determined by DTA of MgCuss.

tinguishing between them inspite of their weak intensities; they disappear for $x \le 1.94$.

The α - β transition temperature decreases with the increased concentration of Cu²⁺ in the Mg₂P₂O₇ lattice, like the behavior of Mg²⁺ in Cu₂P₂O₇. The decreasing values of transition temperature are 20 K (α - β -Mg₂P₂O₇) and 16 K (α - β -Cu₂P₂O₇) with 1% of Cu²⁺ and Mg²⁺, respectively, in the lattice of Mg₂P₂O₇ and Cu₂P₂O₇ phosphates. These values could be used to estimate the effect of Cu²⁺ and Mg²⁺ on the transition temperature.

The parameter values of the monoclinic cell (C2/m) of β -(Mg, Cu)₂P₂O₇ are collected in Table I. Figure 2 gives their linear variation with x (0.04 $\leq x \leq 1.94$), where the cell data of β -Mg₂P₂O₇ and β -Cu₂P₂O₇ compounds are added. The *a*, *c*, and β values increase, whereas *b* decreases with the composition of the β -MgCuss.

$ACuP_2O_7$ Compounds (A = Ca, Sr, and Ba)

Only CaCuP₂O₇, SrCuP₂O₇, and BaCu P_2O_7 (BaCu) diphosphates were isolated in

FIG. 2. Dependence of the monoclinic cell parameters (C2/m) of β -Mg_{2-x}Cu_xP₂O₇ phases against x (data of β -Mg₂P₂O₇ and β -Cu₂P₂O₇ are added).

 $A_2P_2O_7$ - $Cu_2P_2O_7$ systems, A = Ca, Sr, and Ba.

The XRD patterns of CaCu and SrCu are similar to that of α -Ca₂P₂O₇ (17); they are isomorphous to this phosphate. Lately, we have prepared good crystals of SrCu by a flux method, and Weissenberg photographs confirmed this isomorphism. On the other hand, there is a similarity between XRD spectra of BaCu, BaNi, and BaCo reported by Riou *et al.* (27). These authors have indicated the existence of dimeric groups of co-

TABLE I Cell Parameter Data of β -(Mg,Cu)₂P₂O₇ Diphosphates

x	a ± 0.01 Å	$b \pm 0.02$ Å	c ± 0.01 Å	$\beta \pm 0.1^{\circ}$	v ± 2 Å ³
0.4	6.49	8.28	4.52	103.8	236
0.05	6.50	8.27	4.52	104.0	236
0.50	6.58	8.24	4.53	105.2	237
1.00	6.65	8.19	4.53	106.3	237
1.50	6.75	8.16	4.55	107.8	239
1.94	6.83	8.13	4.57	108.8	240
2 ^b	6.83	8.12	4.58	108.85	240

^a Data from Ref. (2).

^b Data from Ref. (7).

balt ions resulting from two edge-sharing irregular MO_6 octahedra (M = Co, Ni). However, our magnetic measurements on powder samples of BaCu diphosphate show no maximum on the $\chi_M = f(T)$ curve (Fig. 3a); thus, it is not in favor of Cu-Cu dimers

FIG. 3. Temperature dependence of the magnetic susceptibility χ (a) and its reciprocal χ^{-1} (b) for BaCuP₂O₇.

|--|

Compound	$a \pm 0.02$ Å	$b \pm 0.02 \text{ Å}$	$c \pm 0.01$ Å	$\beta \pm 0.1^{\circ}$	$V \pm 3 \text{ Å}^3$	⟨r⟩Å	Ref.
α -Sr ₂ P ₂ O ₇ ^{<i>a</i>}	13.10	8.91	5.40	90	630	1.28	(16)
α -Ca ₂ P ₂ O ₇ ^b	12.66	8.54	5.32	90.3	575	1.12	(17)
SrCuP ₂ O ₂ ^b	12.46	8.13	5.37	90.6	544	0.99	(c)
CaCuP ₂ O ₇ ^b	12.36	8.05	5.22	90.8	519	0.925	(c)

Cell Parameter Values of $A_2P_2O_7$ and $ACuP_2O_7$ Compounds (A = Ca and Sr)

^{*a*} Spacegroup *Pbnm.* ^{*b*} Spacegroup *P*2₁/*n.* ^{*c*} This work.

TABLE III

Interplaner Distance Values of $A \operatorname{CuP}_2 O_7$ with $A = \operatorname{Ca}$, Sr $(P2_1/n)$ and Ba

CaCuP ₂ O ₇				SrCuP ₂ O ₇						BaCuP ₂ O ₇				
h	k	I	d ^{calcd}	d ^{obsd}	I/I _o	h	k	l	$d^{\rm calcd}$	d ^{obsd}	I/I _o	dobsd	I/I _o	
1	1	0	6.75	6.75	20	1	1	0	6.81	6.83	10	7.4	6	
2	0	0	6.18	6.18	<5	2	0	0	6.23	6.24	10	5.80	7	
{ 2	1	0	4.90	1 91	40	[1	0	1	4.95			4.61	6	
1	0	1	4.83	4.04	40	{ 2	1	0	4.94	4.95	5	4.41	13	
1	0	<u>1</u>	4.78	4.77	35	L 1	0	1	4.91			4.35	7	
0	1	1	4.38	4.37	5	0	1	1	4.48	4.47	5	4.13	6	
0	2	0	4.03	4.03	10	0	2	0	4.07	4.07	10	4.00	6	
1	2	0	3.83	3.83	10	1	2	0	3.86	3.88	<5	3.85	5	
3	1	<u>0</u>	3.67	3.67	15	3	1	0	3.70	3.70	<5	3.78	12	
[2	1	1	3.59	3 54	-5	∫ 2	1	1	3.65	2 62	10	3.68	6	
12	1	1	3.55	5.54	~5	2	1	1	3.62	5.05	10	3.62	13	
2	2	0	3.37	3.37	15	2	2	0	3.40	3.41	<5	3.55	100	
3	0	1	3.26	3.27	100	3	0	1	3.30	3.30	100	3.30	12	
[3	0	1	3.21	2 10	3 10	80	∫ 3	0	1	3.27	2.75	75	3.05	25
10	2	1	3.19	5.19	00) O	2	1	3.24	3.23	75			
[1	2	1	3.09			ſ 1	2	ī	3.14					
{ 4	0	0	3.09	3.09	30	{ 1	2	1	3.13	3.13	20	2.952	51	
l 1	2	1	3.08			4	0	0	3.11			2.916	8	
3	1	1	3.02	3.03	10	∫ 3	1	ĩ	3.06	2.04	60	2 010	12	
3	1	1	2.98	2.98	60	<u></u>] 3	1	1	3.03	5.04	00	2.010	15	
∫ 4	1	0	2.884	2 883	30	∫ 4	1	0	2.909	2 006	45	2.689	9	
3	2	0	2.879	2.002	50	13	2	0	2.905	2.900	43	2.600	17	
2	2	1	2.823	2.820	25	2	1	1	2.868	2.870	45	2.525	8	
[1	3	0	2.622	2 616	00	0	0	2	2.685	2.685	65	2.506	12	
[0	0	2	2.610	2.010	90	1	3	0	2.648	2.650	40	2.484	5	
4	1	1	2.539	2.544	40	∫ 4	1	1	2.568	2 562	25	2 424	10	
0	1	2	2.483	2.487	<5	3	2	1	2.563	2.305	25	2.424	10	
[4	2	0	2.451	2 448	20	ſO	1	2	2.549			2.244	7	
[1	1	2	2.440	2.440	20	{ 3	2	1	2.547	2.545	15	2.209	4	
2	0	2	2.392	2 301	10	L 4	1	1	2.547					
(0)	3	1	2.386	2.	10	1	1	2	2.503	2.502	5	2.164	7	
5	1	õ	2.363	2.361	20	{ 2	0	2	2.475	2 478	5	2.128	7	
2	1	2	2.314	2.320	10	[4	2	0	2.472	2.7/0	5	2.043	10	

FIG. 4. Evolution of cell data of α -A₂P₂O₇ and (ACu) compounds (A = Ca and Sr) with the average radii $\langle r \rangle$.

in the lattice. Recently, we have obtained crystals of this phosphate and the structure study is in progress.

The crystalline structures of α -Ca₂P₂O₇ and α -Sr₂P₂O₇ were determined by Calvo (17) and Hagman et al. (16), respectively. Weak distorsions of P₂O₇⁻ anions and small displacements of Ca²⁺, in comparison to the α -Sr₂P₂O₇ lattice, reduce the cell symmetry from the *Pbnm* spacegroup (α -Sr₂P₂O₇) to the subgroup *P*2₁/*n*(α -Ca₂P₂O₇) (17).

Table II gives the crystallographic data of the monoclinic cell of CaCu and SrCu related to α -Ca₂P₂O₇ and α -Sr₂P₂O₇. Table III reports the interplanar distance values of CaCu, SrCu and BaCu compounds.

Figure 4 shows the cell parameter variation of CaCu, SrCu, and α -forms of Ca₂P₂O₇ and Sr₂P₂O₇ phosphates with the mean radii $\langle r \rangle$ of cations in the lattice. $\langle r \rangle$ values are calculated taking into account the oxygen atoms around $(Ca^{2+}, Sr^{2+}, Cu^{2+})$ cations in the structure. The coordination numbers of Ca^{2+} and Sr^{2+} ions are respectively 8 and 9 in α -Ca₂P₂O₇ and α -Sr₂P₂O₇ lattices (17, 16). Thus, the same oxygen neighborhood observed for Ca²⁺ in α -Ca₂P₂O₇ was taken for Ca²⁺ and Sr²⁺ in the mixed phosphate Ca CuP₂O₇ and SrCuP₂O₇ due to their isomorphism. A maximum six-coordinated copper was adopted for Cu²⁺. All radii ion values are from Shannon and Prewitt's data (28).

The variation of the cell parameters with $\langle r \rangle$ for CaCu, SrCu, α -Ca₂P₂O₇, and α -Sr₂P₂O₇ represented in Fig. 4 indicated a regular variation from α -Sr₂P₂O₇ to CaCu P₂O₇. The decrease of $\langle r \rangle$ induces lattice deformations which could be evaluated with the β angle, ranging from 90° (α -Sr₂P₂O₇) to 90.8° (CaCuP₂O₇).

Magnetic susceptibility measurements carried out on powder samples of CaCu and SrCu show a Curie–Weiss behavior with a very small Curie–Weiss temperature ($\theta_0 \approx$ -6 K), which means quasi-isolated mag-

FIG. 5. Temperature dependence of the reciprocal magnetic susceptibility for ACu diphosphates, A = Ca and Sr.

FIG. 6. Partial projection on (010) plane of α -Ca₂P₂O₇ showing calcium chains of S2 sites. S1 positions of Ca(1) are isolated in the lattice. Only the copper- and oxygen-bridged ions are reported (values are from Ref. (17)). *a*, this number indicates the $y \cdot 10^2$ value along \vec{b} -axis.

netic sites (Fig. 5). This behavior could be explained on account of Cu^{2+} distribution in the lattice. In fact, we have seen above an isomorphism between CaCu, SrCu, and α -Ca₂P₂O₇ compounds. The Ca²⁺ ions occupy two independent crystallographic sites of the spacegroup $P2_1/n$ of α -Ca₂P₂O₇ cell, labeled S1 (Ca1) and S2 (Ca2), respectively (17). The S2 positions form an infinite chain along the \vec{c} -axis, while the sites S1 are isolated in the structure (Fig. 6).

The Curie–Weiss law observed with CaCu and SrCu compounds, not consistent with the occupancy of sites S2 by Cu^{2+} , confirms, otherwise, the presence of these ions in sites S1. Ca^{2+} (CaCu) or Sr^{2+} (SrCu) are located in sites S2.

Conclusion

In this paper we have developed the crystalline chemistry of copper (II)-mixed diphosphates $(M, Cu)_2 P_2 O_7$, M = Mg, Ca, Sr, and Ba.

The β -forms of Mg₂P₂O₇ and Cu₂P₂O₇ appear with small quantities of Cu²⁺ and Mg²⁺ in their lattice, respectively. The β -MgCuss is continuous between x = 0.04 and 1.94 at 298 K. Only three phases CaCuP₂O₇, Sr CuP₂O₇, and BaCuP₂O₇ are existing in (A, Cu)₂P₂O₇ systems, A =Ca, Sr, and Ba. The two former are isomorphous to α -Ca₂P₂O₇, the structure study of the latter is in progress.

References

- 1. C. CALVO, Canad. J. Chem. 43, 1147 (1965).
- 2. C. CALVO, Canad. J. Chem. 43, 1139 (1965).
- 3. K. LUKASZEWICZ, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 14(10), 725 (1966).
- K. LUKASZEWICZ, Buli. Acad. Pol. Sci., Ser. Sci. Chim. 15(2), 53 (1967).
- 5. C. CALVO, J. S. LEUNG, AND W. R. DATARS, J. Chem. Phys. 46(2), 796 (1967).
- B. E. ROBERTSON AND C. CALVO, Acta Crystallogr. 22, 665 (1967).
- 7. B. E. ROBERTSON AND C. CALVO, Canad. J. Chem. 46, 605 (1968).
- 8. B. E. ROBERTSON AND C. CALVO, J. Solid. State Chem. 1, 120 (1970).
- 9. N. KRICHNAMACHRI AND C. CALVO, Acta Crystallogr. B 28, 2883 (1972).
- 10. K. LUKASZEWICZ, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 15, 47 (1967).
- 11. K. LUKASZEWICZ AND R. SMAJIEWICZ, *Rocz. Chem.* 35, 741 (1961).
- A. PIETRASZKO AND K. LUKASZEWICZ, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 16, 183 (1968).
- 13. R. MASSE, J. C. GUITEL, AND A. DURIF, Mater. Res. Bull. 14, 337 (1979).
- 14. W. H. ZACHARIASEN, Z. Kristallogr. A 73, 1 (1930).
- 15. N. WEBB, Acta Crystallogr. 21, 942 (1966).
- L. O. HAGMAN, I. JANSON AND C. MAGNELI, Acta Chem. Scand., 22, 419 (1968).
- 17. C. CALVO, Inorg. Chem. 7, 1347 (1968).
- M. SAFIA, H. M. RAZA, AND R. B. RAMA, Indian J. Chem., Sect. A 15(9), 820 (1977).
- C. CALVO AND P. K. L. AU, Canad. J. Chem. 47, 3409 (1969).
- 20. W. BOBROWNICKI AND K. SLAWSKI, Bull. Acad. Pol. Sci., Ser. Sci. Chem. 9, 261 (1960).
- 21. M. V. HOFFMAN, J. Electrochem. Soc. 110(12), 1223 (1963).
- 22. M. V. HOFFMAN, J. Electrochem. Soc. 115(12), 560 (1968).
- 23. C. CALVO, J. Electrochem. Soc. 115(12), 1095 (1968).
- 24. C. C. LAGOS, J. Electrochem. Soc. 115(12), 1271 (1968).
- M. V. HOFFMAN, J. Electrochem. Soc. 117(2), 227 (1970).
- R. A. MCCAULEY AND F. A. HUMMEL, J. Electrochem. Soc. 118(5), 755 (1971).
- 27. D. RIOU, P. LABBE, AND M. GOREAUD, C. R. Acad. Sci. Paris, Sér. II, 903 (1988).
- R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. B 25, 925 (1969).